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Abstract
Decoherence of two atoms initially prepared in Bell states in free space is
discussed theoretically through calculation of the probabilities for the atoms
to remain respectively in these states. It is found that, due to quantum
interference, the atoms never follow a purely exponential law to decohere
from their initial states, even though spontaneous emission is illustrated to
cause the decoherence.

PACS numbers: 03.65.Yz, 03.65.Ud, 03.65.Ta

1. Introduction

Any open quantum system inevitably interacts with its environment and changes the coherence
existing among its constituents as a result. Such an effect is referred to as decoherence.
Decoherence of various quantum systems is being studied largely for the reason that this
process not only sheds light on the fundamental problem of where the possible boundary
between the quantum world and the classical world lies [1], but also is important for the
research in the theory of quantum information. The quantum information theory is well known
to rely on correlations (entanglement) among qubits to achieve information processing that is
otherwise impossible in the classical world [2]. But it is also well known that decoherence can
reduce a system’s entanglement and hence its efficiency of quantum information processing. In
order to discover practical methods to suppress this unwanted decoherence, so that information
can be processed without interruption, a thorough understanding of how decoherence takes
place is evidently needed.

Presented in this work is a study of decoherence of two entangled atoms [3] that are
stationary [4] in vacuum and interact indirectly with each other through vacuum fields. More
specifically, the decoherence process is formulated via computing the probabilities for the
atoms to remain in their initially entangled states. Compared with one commonly used
method that depends first on a (nontrivial) master equation to determine the density operator
of a system and then on the density operator to measure the entanglement of the system [5–7],
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the present approach is not only simple in mathematics but also, more importantly, able to
provide more direct information (not available in the preceding method) on how the system
decoheres from its initially entangled states to other different entangled states. This latter
point will become clear in the following discussion. Note also that, in contrast to other cases
where two entangled atoms are placed in either a single cavity [8] or two isolated ones [5],
more electromagnetic modes have to be considered in the present problem. Two-atom systems
are frequently studied in the literature (not merely limited in the field of quantum information,
of course) for the reason that they often allow exact solutions and can shed insight on more
complicated systems.

For simplicity, the two atoms, A and B, are assumed to be identical and to have two states
|E〉 and |G〉 whose energies are respectively h̄ωE and h̄ωG (ω0 ≡ ωE − ωG). The location
of atom A is chosen to be the origin of the Cartesian coordinate system used in the present
study, and the location of atom B relative to the origin is chosen to be �R = Rẑ without loss of
generality. Under these conditions, the interaction between the atoms and the vacuum can be
represented by the following Hamiltonians in the minimal-coupling form [9]:

VA = �µ ·
∑

s

( �βsa
†
s + �β∗

s as

)

= �µGE|G〉〈E| ·
∑

s

�βsa
†
s + �µEG|E〉〈G| ·

∑
s

�β∗
s as

≡ V
†
A + V −1

A , (1)

VB = �µ ·
∑

s

( �βs ei�ks · �Ra†
s + �β∗

s e−i�ks · �Ras

)

= �µGE|G〉〈E| ·
∑

s

�βs ei�ks · �Ra†
s + �µEG|E〉〈G| ·

∑
s

�β∗
s e−i�ks · �Ras

≡ V
†
B + V −1

B , (2)

where �βs = i
√

2πh̄ω2
0

/
(L3ωs)�εs is the amplitude (containing a polarization unit vector �εs)

of the sth quantized electromagnetic mode ωs (|�ks | = ωs/c) in the vacuum, and �µ (assumed
to be in the x̂ − ẑ plane) is the electric dipole moment operator of the atoms1. Those parts of
the Hamiltonians in the preceding equations that contain field creation operators a

†
s are denoted

as V
†
i , and those that contain field annihilation operators as are denoted as V −1

i , where
i = A,B. The symbol �µGE , whose complex conjugate is �µEG, is used to represent the matrix
element of �µ between |G〉 and |E〉. Note counter-rotating terms are excluded in the interaction
Hamiltonians, because virtual transitions supported by these terms are found to play merely a
weak role in atomic evolution [11]. The total Hamiltonian of the present system that includes
the two atoms and the vacuum is constructed as follows:

H = H0 + V
†
A + V −1

A + V
†
B + V −1

B . (3)

As usual, the unperturbed Hamiltonian H0 reads

H0 = h̄ωE|E〉〈E| + h̄ωG|G〉〈G|︸ ︷︷ ︸
atom A

+ h̄ωE|E〉〈E| + h̄ωG|G〉〈G|︸ ︷︷ ︸
atom B

+
∑

s

h̄ωsa
†
s as . (4)

1 As in the reference cited in [10], the dipole moment operators of the atoms are assumed to be along the same
direction for simplicity.
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The zero-point energy of the vacuum is ignored in H, since this energy is constant and
contributes little to the evolution of the system. Also ignored in H is the dipole–dipole
interaction potential between the atoms; as a result, the separation R between the two atoms is
required to satisfy the restriction Rω0/c � 1 [12].

In the Schrödinger picture, the state of the system |ψ(t)〉 at time t can be found from the
system’s initial state |ψ(0)〉 with the help of the following integral [13]:

|ψ(t)〉 = − 1

2π i

∫ ∞

−∞
dz

e−izt/h̄

z − H
|ψ(0)〉, (5)

where it is understood the denominator of the integrand contains an imaginary component
iη (η → 0+). This integral relation enables the decoherence process to be formulated in the
present paper through tracing those atomic transitions that eventually reveal the time evolution
of the initially entangled states, from which the probabilities for the system to be in these
states are obtained. Since Bell states might be the best known and maximally entangled states
[14] that exist between two identical atoms, the present paper is devoted to a specific case, in
which the atoms are assumed to be initially in the (four) Bell states coupled to the vacuum
states:

|ψ1〉 = 1√
2
(|E〉 ⊗ |G〉 + |G〉 ⊗ |E〉) ⊗ |0〉, (6)

|ψ2〉 = 1√
2
(|E〉 ⊗ |G〉 − |G〉 ⊗ |E〉) ⊗ |0〉, (7)

|ψ3〉 = 1√
2
(|E〉 ⊗ |E〉 + |G〉 ⊗ |G〉) ⊗ |0〉, (8)

|ψ4〉 = 1√
2
(|E〉 ⊗ |E〉 − |G〉 ⊗ |G〉) ⊗ |0〉. (9)

Throughout the paper, in each tensor product of states, the left state is understood to represent
the state of atom A, the middle state the state of atom B, and the right state the state of the
field. Experimentally, Bell states have been constructed with two ions confined in a linear
Paul trap and studied for their dynamic properties [15].

The remainder of the paper is organized as follows. The decoherence of the system from
states |ψ1〉 and |ψ2〉 and from |ψ3〉 and |ψ4〉 is studied in sections 2 and 3, respectively. In
section 4, the results are summarized.

2. Decoherence from |ψ1〉 and |ψ2〉

Since states |ψ1〉 and |ψ2〉 are all composed of two common components |E〉 ⊗ |G〉 ⊗ |0〉 and
|G〉 ⊗ |E〉 ⊗ |0〉 (see equations (6) and (7)), decoherence properties of the system from these
states can be determined via studying how these two components individually develop with
time.

To formulate the time development of |ψ(0)〉 = |E〉⊗|G〉⊗|0〉, which corresponds to an
initial condition that atom A is in the excited state, atom B in the ground state, and no photons
present, it is convenient to follow the procedure used in [11] to expand the Green function
1/(z − H) in equation (5) into ascending powers of VB ,

1

z − H
= w0 + w0VBw0 + w0VBw0VBw0 + · · · , (10)

where it is defined that
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w0 =
(

1 − 1

z − H0
VA

)−1 1

z − H0

= 1

z − H0
+

1

z − H0
VA

1

z − H0
+

1

z − H0
VA

1

z − H0
VA

1

z − H0
+ · · · .

(11)

Consider operator w0 first. Obviously this operator only addresses the interaction of atom
A with the vacuum and cannot modify the state of atom B. Since the first term in the serial
expansion of w0 in equation (11) contains no interaction Hamiltonian VA, it, when operated
on |ψ(0)〉, merely represents one possibility that throughout the whole process atom A does
not leave the excited state:

1

z − H0
|E〉 ⊗ |G〉 ⊗ |0〉 = 1

z − E0
|E〉 ⊗ |G〉 ⊗ |0〉, (12)

where E0 = h̄(ωE + ωG). In the second term, one VA operator is included. Under the action
of this operator, atom A can now transit from the excited state to the ground state and emit
one photon:

1

z − H0
VA

1

z − H0
|E〉 ⊗ |G〉 ⊗ |0〉 = 1

z − E0

∑
s

As |G〉 ⊗ |G〉 ⊗ |1s〉
z − Es

, (13)

where Es = 2h̄ωG + h̄ωs, As = �µGE · �βs , and the emitted photon can be in any mode |1s〉.
Note, in the third term, there are two VA operators. For the structure of VA and the present
initial condition, the only possible event that can be brought about by this term is that the
right VA first causes atom A to transit to the ground state and to emit one photon, and the left
VA then immediately annihilates the photon just released and forces the atom to return to its
excited state. Such an event is actually a radiation reaction process: the atom interacts with
the photons it creates. Therefore, one has

1

z − H0
VA

1

z − H0
VA

1

z − H0
|E〉 ⊗ |G〉 ⊗ |0〉 = EA

(z − E0)2
|E〉 ⊗ |G〉 ⊗ |0〉. (14)

In the preceding equation, EA = ∑
s

|As |2
z−Es

.
For the remaining terms on the right-hand side (RHS) of equation (11), it is recognized,

following preceding arguments, that while those terms containing even (including 0) orders
of VA are only responsible for atom A to undertake repeated radiation reactions and stay in
the excited state, those containing odd orders of VA enable the atom first to perform repeated
radiation reactions and then to transit to the ground state, accompanied by emitted photons.
The action of w0 on |ψ(0)〉 thus leaves the system in either its initial state or another state in
which both the atoms are in state |G〉 and one photon is created:

w0|E〉 ⊗ |G〉 ⊗ |0〉 = |E〉 ⊗ |G〉 ⊗ |0〉
z − E0 − EA

+
1

z − E0 − EA

∑
s

As |G〉 ⊗ |G〉 ⊗ |1s〉
z − Es

. (15)

By using the same method as that used in [11], one finds

EA = − �0h̄

2ω0π

[
� + ω0 ln

(
� − ω0

ω0

)]
− i

�0h̄

2
,

where � denotes the cut-off frequency of the vacuum modes, a parameter that is needed to
make the nonrelativistic Hamiltonian H valid in the present discussion [16]. Note that EA is
identical to the corrected excited-state energy level of an isolated atom in vacuum and illustrates
through its imaginary part the radiative instability of the atom’s excited state [11]; this fact is
expected, since, at this stage, atom B, although present, has no effect on atom A’s transitions.
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Thus, physically, under the influence of operator w0, atom A is induced to decay spontaneously
out of its excited state. In the preceding expression, �0 is the familiar spontaneous emission
rate of an isolated excited atom in vacuum and reads �0 = 4| �µGE|2ω3

0

/
(3h̄c3).

Since the counter-rotating terms are ignored in the interaction Hamiltonians VA and VB ,
atom B, now in its ground state, can never jump into the excited state without first absorbing
the photon emitted by atom A. Evidently, only the second term on the RHS of equation (15),
which represents a photon is spontaneously emitted, allows the second operator w0VBw0 on
the RHS of equation (10) to achieve such a transition. Specific calculation yields

w0VBw0|E〉 ⊗ |G〉 ⊗ |0〉 = EAB

(z − E0)(z − E0 − EA)
|G〉 ⊗ |E〉 ⊗ |0〉, (16)

where EAB = ∑
s

AsB
∗
s

z−Es
, and B∗

s is the complex conjugate of Bs = �µGE · �βs ei�ks · �R .
While in the excited state, atom B has a chance to emit one photon and to return to the

ground state; this process is realized with the help of the third operator w0VBw0VBw0 on the
RHS of equation (10). But once atom B returns to the ground state, atom A, now in the ground
state too, can have three different options: atom A can either ignore the photon emitted by
atom B (see the first term on the RHS of equation (17)), repeatedly absorb and emit the photon
and remain in the ground state (see the second term), or absorb the photon to go to the excited
state and stay there (see the third term). Mathematically, these options are made possible by
those components of the left w0 in the operator w0VBw0VBw0 that are respectively composed
of 1/(z−H0), even numbers of VA, and odd numbers of VA. Thus, the operator w0VBw0VBw0

leaves the system in three possible states:

w0VBw0VBw0|E〉 ⊗ |G〉 ⊗ |0〉 = EAB

(z − E0)(z − E0 − EA)

∑
s

Bs |G〉 ⊗ |G〉 ⊗ |1s〉
z − Es

+
|EAB |2

(z − E0)(z − E0 − EA)2

∑
s

As |G〉 ⊗ |G〉 ⊗ |1s〉
z − Es

+
|EAB |2

(z − E0)(z − E0 − EA)2
|E〉 ⊗ |G〉 ⊗ |0〉. (17)

In general, it turns out that for a term that contains an even number of VB operators in the
serial expression of the Green function in equation (10), the allowed processes for atom B are
repeated absorption and emission of the photons created by atom A, followed by a settlement
of the atom in its ground state; for a term that contains an odd number of VB operators, on
the other hand, atom B can first execute the above-mentioned absorptions and emissions and
then transit to the excited state. Between and after atom B’s transitions, atom A can execute
either pure photon absorptions and emissions or these actions plus transitions to the excited
state. After all the terms on the RHS of equation (10) are accounted for, it follows that the
system is only able to reside in three final states: |G〉 ⊗ |G〉 ⊗ |1s〉, |E〉 ⊗ |G〉 ⊗ |0〉 and
|G〉 ⊗ |E〉 ⊗ |0〉. This conclusion can be understood by noting that the present Hamiltonian,
which is under the rotating-wave approximation, requires a photon to be created only when
one atom transits from the excited state to the ground state and vice versa. These final states
are also a representation that entanglement is formed among the atoms and fields [12]; note the
initial state considered now is |ψ0〉 = |E〉 ⊗ |G〉 ⊗ |0〉, a separable state. The physical origin
of such entanglement is that any of these atoms, if in the ground state, can have a chance to
absorb the photons emitted by the other atom to go to the excited state, and becomes entangled
with the other atom as a result. Since the first of the three final states is not needed in the
calculation of the probabilities for the system to be in |ψ1〉 and |ψ2〉, the following expansion
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is expressed formally in terms of the rest two states alone:

1

z − H
|E〉 ⊗ |G〉 ⊗ |0〉 = 1

2

(
1

z − E0 − EA − |EAB | +
1

z − E0 − EA + |EAB |
)

× |E〉 ⊗ |G〉 ⊗ |0〉

+
EAB

2|EAB |
(

1

z − E0 − EA − |EAB | − 1

z − E0 − EA + |EAB |
)

× |G〉 ⊗ |E〉 ⊗ |0〉, (18)

where EB ≡ ∑
s

|Bs |2
z−Es

= EA has been used.
After using the same method as that used in [11] and replacing z with E0 + EA, one finds

that

EAB =
∫ �

0
dx

(
a − x + i

�0

2

)
�0/2

(a − x)2 + �2
0

/
4

{
3h̄c

2πω0R
sin(xR/c) − 3h̄

4πω0| �µGE|2

×
[ |µx |2 sin(Rx/c)

xR/c
+ (2|µz|2 − |µx |2)

(
sin(xR/c)

(xR/c)
+

2 cos(xR/c)

(xR/c)2

− 2 sin(xR/c)

(xR/c)3

)]}
, (19)

where a = ω0 − �0
2ω0π

(
�+ω0 ln �−ω0

ω0

)
, and µx and µz are respectively the x- and z-components

of �µGE . Since �0/ω0 ∼ 10−6 and ln(�/ω0) ∼ 10, it is valid to introduce an approximation
[13],

�0/2

(x − x0)2 + (�0/2)2
� πδ(x − x0),

to carry out the integral in equation (19),

EAB = i
�03h̄a

4ω0

[
sin(Ra/c)

(Ra/c)

|µx |2
| �µGE|2 − 2|µz|2 − |µx |2

| �µGE|2
(Ra/c) cos(Ra/c) − sin(Ra/c)

(Ra/c)3

]
.

(20)

The preceding approximation shows that of all the frequencies involved in equation (19), only
the frequency a determined by the atoms’ modified excited state and the ground state gives a
dominant contribution to the integral. From the expression in equation (16), it is clear that EAB

can be interpreted as a parameter that measures the efficiency with which one atom absorbs
photons emitted by the other atom, and, therefore, represents the strength of the interaction
between the two atoms through radiation2. Note that as the denominators in equation (18)
show, in addition to the radiation reactions, the energy level of the excited state is also changed
by such atom–atom interaction. The expression in equation (20) indicates that unless the
separation R between the atoms is infinite, the atom–atom interaction energy EAB usually
cannot be ignored. It is worth while to mention that the coupling between the two atoms
is established through real photon exchanges as a result of the rotating-wave approximation
made in H.

The method used to formulate the development of the initial state |E〉 ⊗ |G〉 ⊗ |0〉 can
also be applied to study that of another state |G〉⊗ |E〉⊗ |0〉, which corresponds to a different
initial condition that atom A is in its ground state, atom B in the excited state, and no photons

2 The atom–atom interaction considered here is evidently different from the well-known London interaction, which
exists between two neutral atoms, as a result of the transient atomic polarization.
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present. The only modification needed is that the Green function should be expanded now
into a series in ascending powers of VA:

1

z − H
= w1 + w1VAw1 + w1VAw1VAw1 + · · · , (21)

where

w1 =
(

1 − 1

z − H0
VB

)−1 1

z − H0

≡ 1

z − H0
+

1

z − H0
VB

1

z − H0
+

1

z − H0
VB

1

z − H0
VB

1

z − H0
+ · · · .

(22)

Following the same procedure as that used to derive the expression in equation (18), one gets

1

z − H
|G〉 ⊗ |E〉 ⊗ |0〉 = 1

2

(
1

z − E0 − EA − |EAB | +
1

z − E0 − EA + |EAB |
)

× |G〉 ⊗ |E〉 ⊗ |0〉

+
E∗

AB

2|EAB |
(

1

z − E0 − EA − |EAB | − 1

z − E0 − EA + |EAB |
)

× |E〉 ⊗ |G〉 ⊗ |0〉, (23)

where, as in equation (18), the components along |G〉 ⊗ |G〉 ⊗ |1s〉 have been ignored for the
same reason. But, were the components ignored in equations (18) and (23) written explicitly,
the relations in these equations, aided with those in equations (6) and (7), would have shown
that the system actually evolves from its initially entangled states |ψ1〉 and |ψ2〉 to other
entangled states. Consequently, any measure of the entanglement derived from the density
operator of the system can only give information about how the system’s entanglement changes
with time [5–7], not necessarily about how the system decoheres out of its initially entangled
states. The present approach, which builds on finding the probabilities with which the system
remains in its initially entangled states, can better address the latter decoherence process.

When the expressions in equations (18) and (23) are summed, substituted into
equation (5), and projected on |ψ1〉, the probability amplitude that the system remains in
the initial state |ψ1〉 is obtained; see equation (6). To find the corresponding probability P1,
one simply takes the modulus square of the probability amplitude. Similarly, the probability
P2 for the system to stay in state |ψ2〉 can also be found with the help of the relations in
equations (18) and (23). It turns out that

P1 = P2 = e−t�0

2
[1 + cos(2t |EAB |/h̄)]. (24)

The relation in equation (24) shows (through its exponential component) that spontaneous
emission of each atom, which is a local decoherence process, is responsible for the non-local
decoherence of the system [5]. But, the same relation also shows that, due to the atom–atom
interaction energy EAB , the non-local decoherence process of the system does not follow a
purely exponential law (see the cosine function in the same equation). To understand the
nonexponential behaviour of P1 and P2, it is necessary to note two points. First, as the
discussion presented in this section already reveals, see equations (15) and (17) for example,
atom B in the ground state can eliminate the photon created by atom A to transit to the
excited state, and, when atom B later returns to the ground state, it can, via the photon it
emits itself, force atom A to transit back to the excited state with a nonzero probability. Thus,
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spontaneous emission of one excited atom is actually influenced by the presence of the other
atom and can no longer be a local process any more [10]. Second, a close examination of the
expressions in equations (18) and (23) additionally exhibits that the atom–atom interaction
splits the excited energy level of each atom (already modified by the radiation reactions) into
two sublevels EA + |EAB | and EA − |EAB | and effectively changes the two two-level atoms
into two multi-level atoms. The cosine function in equation (24) is produced as a result of
quantum interference between the atomic transitions from these shifted excited states to the
ground state; it is this quantum interference that deprives the system of its coherence at a
period of (2N + 1)πh̄/(2|EAB |), where N is any nonnegative integer. Quantum interference
in a multi-level atomic system can bring about other different effects, one of which is the
modification of spontaneous emission spectrum [17].

Equations (18) and (23) also show that the entangled states |ψ1〉 and |ψ2〉 remain pure
states even suffering the atom–field interaction. This is because, although the vacuum fields
have many modes, only a small fraction of these modes in a narrow range of the resonance
frequency a are efficiently coupled to the atoms.

3. Decoherence of |ψ3〉 and |ψ4〉
For the Hamiltonian H considered in the present work (the counter-rotating terms excluded),
the system, if initially in the state |G〉 ⊗ |G〉 ⊗ |0〉, will remain in that state permanently,

1

z − H
= |G〉 ⊗ |G〉 ⊗ |0〉 = 1

z − 2h̄ωG

|G〉 ⊗ |G〉 ⊗ |0〉, (25)

and the time evolution of the entangled states |ψ3〉 and |ψ4〉 given respectively in
equations (8) and (9) is only determined by that of the component |E〉 ⊗ |E〉 ⊗ |0〉. But,
unlike the cases discussed in the last section, where excitation of one atom from the ground
state to the excited state relies entirely on the other atom’s release of one photon in the
opposite transition, the atoms in state |E〉 ⊗ |E〉 ⊗ |0〉 are now all initially in the excited
state and, thus, can perform independent transitions. The atoms can, of course, interact
with each other. For example, they can first transit from the excited state to the ground
state and then absorb the photons emitted by the other to return to the excited state. But,
since such a process is proportional to AsBtA

∗
t B

∗
s —three orders smaller than the leading

terms in the above discussion (see, for example, equation (13)), it can be practically ignored
for its negligible magnitude. The ignorance of the atom–atom interaction (still through
the vacuum) in this section is also supported by the restriction imposed on the system in
section 1: Rω0/c � 1, which significantly suppresses the communications between the
atoms. To make the following mathematical analysis as simple as possible, an independent-
transition approximation is assumed.

After the Green function is expanded as in equation (10) and a procedure similar to that
used in section 2 is followed, one finds

1

z − H
|E〉 ⊗ |E〉 ⊗ |0〉 = |E〉 ⊗ |E〉 ⊗ |0〉

z − 2h̄ωE − E′
A − E′

B

, (26)

where other terms, although illustrating that the system can evolve into different entangled
states, are omitted for their irrelevance in the determination of the probabilities P3 and
P4 that the system remain, respectively, in |ψ3〉 and |ψ4〉. Still in equation (26), E′

A =∑
s

|As |2
z−h̄ωG−h̄ωE−h̄ωs

= E′
B and can be evaluated by following the same method used to calculate

EA, provided z is now replaced by 2h̄ωE . It turns out E′
A = E′

B = EA; this result confirms
that the two atoms exercise spontaneous emission independently and is evidently consistent
with the independent-transition assumption.
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From the definition of |ψ3〉 in equation (8), it is a straightforward matter to find that the
expectation value of the Green function 1/(z − H) in this state is obtained when the relations
in equations (25) and (26) are first summed and then projected on the state. The expectation
value of the Green function in |ψ4〉 can also be found, following a similar procedure. Specific
calculation shows

〈ψ3(4)| 1

z − H
|ψ3(4)〉 = 1

2

(
1

z − 2h̄ωG

+
1

z − 2h̄ωE − E′
A − E′

B

)
. (27)

The preceding expression is substituted in equation (5) to yield, with the help of an application
of the residue theorem, the probability amplitudes for the system to be in states |ψ3〉 and |ψ4〉
at time t, which, after the modulus square is taken, reduce to

P3 = P4 = 1
4 [1 + 2 e−t�0 cos(2bt) + e−2t�0 ], (28)

where b = 2ω0 + 2 Re(EA)/h̄. Like the expression in equation (24), the relation in
equation (28) states that the decoherence of the system from |ψ3〉 and |ψ4〉 is caused by
spontaneous emission of the atoms and follows a nonexponential law too (see the cosine term
in the latter equation); but here the explanation to this nonexponential behaviour is different:
the cosine term comes from the interference between the probability amplitudes for the system
to stay in |G〉⊗|G〉⊗|0〉 and |E〉⊗|E〉⊗|0〉. Note the approximation of independent transition
in this section exempts the atoms’ excited state from any further modification other than that
already caused by the radiation reactions.

If the system is initially in states |ψ3〉 and |ψ4〉, the probability of finding the system in
state |G〉 ⊗ |G〉 ⊗ |0〉 never changes with time; see equation (25). Thus, unlike P1 and P2, the
probabilities P3 and P4 settle into a nonzero value 1/4 as t → ∞. Besides, since |b| � �0,
and since 2|EAB |/h̄ � �0 due to the restriction Rω0/c � 1, the probabilities P3 and P4

oscillate with time more rapidly than P1 and P2 do and have an effectively larger decay rate.
In [15], an experimental observation also indicates that |ψ3〉 and |ψ4〉 decohere more easily
than |ψ1〉 and |ψ2〉. The reason that |ψ1〉 and |ψ2〉 decohere at a relatively mild rate can be
understood like this: the atom–atom interaction (through the vacuum fields) required by the
system to evolve when it starts from |ψ1〉 and |ψ2〉 tends to bring the system back to these
states after the system spontaneously decays out of them and, thus, makes it relatively difficult
for the system to leave these states. In fact, it has been shown that, under certain conditions,
such as that the atoms are directly coupled to each other through the dipole–dipole interaction,
|ψ1〉 and |ψ2〉 can even become robust states whose entanglement remain unchanged [6].

Although, in the discussion presented in this and preceding sections, decoherence is found
to be driven by spontaneous emission of the atoms, it is interesting to note that spontaneous
emission can also induce entanglement; see [12] and the discussion in section 2. Thus,
entanglement and decoherence are in fact two competing processes.

4. Conclusion

In this paper, the decoherence of two atoms initially entangled in the four Bell states is
discussed in the Schrödinger picture. After the Green function is decomposed into a series
of atomic and field operators, every order of the atomic transitions that eventually lead to
the evolution of the system is considered. The states the system evolves into from the initial
states are then found, from which the probabilities the system remains in its initial states are
obtained. These probabilities show that the decoherence of the atoms does not follow an
exponential law, even though the decoherence itself is revealed to be caused by spontaneous
emission. The reason is in calculating the probabilities quantum interference also takes effect.
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[3] See, for authors example André Carvalho A R R, Mintert F and Buchleitner A 2004 Phys. Rev. Lett. 93 230501

(for a discussion of decoherence from multipartite entanglement)
[4] Motion of the center-of-mass of two two-level atoms (confined in a cavity) has been shown to have nonnegligible

affects on the atoms’ quantum properties; see, for example, Yang G J, Zobay O and Meystre P 1999 Phys.
Rev. A 59 4012

[5] Yu T and Eberly J H 2004 Phys. Rev. Lett. 93 140404
[6] Yu T and Eberly J H 2002 Phys. Rev. B 66 193306
[7] Ahn D, Oh J H, Kimm K and Hwang S W 2000 Phys. Rev. A 61 052310
[8] Kim M S and Agarwal G S 1999 J. Mod. Opt. 46 2111
[9] Compagno G, Passante R and Persico F 1995 Atom–Field Interactions and Dressed Atoms (New York:

Cambridge University Press)
[10] It has been known for a long time that the radiation decay process of multiatom systems follow nonexponential

laws; see Lehmberg R H 1970 Phys. Rev. A 2 889
[11] Guo W 2005 Opt. Commun. 250 137
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